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Abstract We study the divergence of the solution to a Schrödinger-type amplifier driven
by the square of a Gaussian noise in presence of a random potential. We follow the same
approach as Mounaix, Collet, and Lebowitz (MCL) in terms of a distributional formulation
of the amplified field and the use of the Paley-Wiener theorem (Mounaix et al. in Commun.
Math. Phys. 264:741–758, 2006, Erratum: ibid. 280:281–283, 2008). Our results show that
the divergence is not affected by the random potential, in the sense that it occurs at exactly
the same coupling constant as what was found by MCL without a potential. It follows a
fortiori that the breakdown of the amplifier is not affected by the possible existence of a
localized regime in the amplification free limit.

1 Introduction

We investigate the breakdown of linear amplification in a system driven by the square of a
Gaussian noise in presence of a random potential. We consider the stochastic PDE

{
∂t E (x, t) − i

2m
�E (x, t) = [λ|S(x, t)|2 − iρ(x, t)]E (x, t),

t ≥ 0, x ∈ � ⊂ R
d , and E (x,0) = 1,

(1)

where m �= 0 is a complex mass with Im(m) ≥ 0, λ > 0 is the coupling constant, S is a zero
mean complex Gaussian noise, and ρ is a zero mean real noise (not necessarily Gaussian). In
the “diffractive case” where Im(m) = 0 and Re(m) �= 0, this problem models the backscat-

P. Mounaix (�) · P. Collet
Centre de Physique Théorique, UMR 7644 du CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex,
France
e-mail: mounaix@cpht.polytechnique.fr

P. Collet
e-mail: collet@cpht.polytechnique.fr

mailto:mounaix@cpht.polytechnique.fr
mailto:collet@cpht.polytechnique.fr


Wave Localization Does not Affect the Breakdown 467

tering of an incoherent laser by an optically active medium with a randomly perturbed index
of refraction.1

In the unperturbed limit ρ(x, t) ≡ 0, the breakdown of (1) defined as the divergence of its
average solution was investigated in [1]. There, the value of λ at which the q-th moment of
|E (x, t)| w.r.t. S diverges is obtained. Quite remarkably, this value is found to be independent
of m for |m|−1 > 0 and always less or equal for |m|−1 > 0 than for |m|−1 = 0, i.e. when the
�E term is absent. This somewhat surprising result follows from the fact that, however small
|m|−1 > 0 is, the �E term allows amplification to sample every ray trajectory. In particular,
the most amplified paths always contribute to the amplification of E and it can be shown that
the breakdown of (1) results from the divergence of their contributions. On the contrary, if
|m|−1 = 0 only amplification along straight paths can contribute to the overall amplification
of E and cause its divergence.

Equation (1) with a time independent potential has been extensively studied in the op-
posite case of no amplification, i.e. with ρ(x, t) ≡ ρ(x) and λ = 0 [2–7]. For d ≤ 2, the
situation of interest in optics,2 the random Hamiltonian H0 = −(2m)−1� + ρ(x) has only
point spectrum with localized eigenfunctions randomly distributed over �. When amplifi-
cation is turned on (λ > 0), the most amplified paths may happen to zigzag across different
eigenfunctions of H0. In this case, the contribution of the most amplified paths is expected
to be reduced relatively to the one of less amplified, but straighter, ray trajectories bound to
only one localized eigenfunction. The question then arises whether such localization effects
are powerful enough to make the breakdown of (1) occur at a greater λ than for ρ(x, t) ≡ 0.

In this paper we answer that question by determining the value of λ at which the q-th
moment of |E (x, t)| w.r.t. S diverges for almost every realization of ρ. We follow the same
strategy as in [1]. Considering a wide class of time dependent ρ(x, t), we find that this value
is the same as when ρ(x, t) ≡ 0 (the result holds for almost every realization of ρ). The
possible existence of a localized regime for the solution to (1) with λ = 0 does not affect the
divergence of its moments when λ > 0.

The outline of the paper is as follows. In Sect. 2 we specify the classes of ρ and S which
we can treat and we give some definitions. Sect. 3 is devoted to technical results yielding
the control of the growth of |E (x, t)|q . The divergence of the moments of |E (x, t)| w.r.t. S

for almost every realization of ρ is investigated in Sect. 4. Finally, the divergence of the
moments of |E (x, t)| w.r.t. both ρ and S is investigated for a slightly reduced class of ρ at
the end of Sect. 4.

2 Model and Definitions

We consider the solution to the linear amplifier equation (1) with m in C+\{0}, where C+ ≡
{m ∈ C : Im(m) ≥ 0}, and � a d-dimensional torus with d ≤ 3. The random field S is the
same as in [1]. Namely, we assume that S can be expressed as a finite combination of M

complex Gaussian r.v., sn,

S(x, t) =
M∑

n=1

sn�n(x, t), (2)

1In this case the time variable plays the role of the space variable along the laser propagation direction and d

denotes the number of transverse directions.
2See footnote 1.
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with { 〈sn〉 = 〈snsm〉 = 0,

〈sns
∗
m〉 = δnm.

(3)

The �n are normalized such that

1

|�|
∫ 1

0

∫
�

〈|S(x, τ )|2〉dτddx = 1

|�|
M∑

n=1

∫ 1

0

∫
�

|�n(x, τ )|2 dτddx = 1.

Furthermore, the �n(·, τ ) are assumed to have second derivatives bounded uniformly in
τ ∈ [0, t], and the �n(x, ·) are piecewise continuous for every x ∈ � with a finite number of
discontinuities in [0, t] for all finite t .

Let ‖·‖∞ denote the uniform norm on � and write ||| · |||∞ = sup0≤τ≤t ‖·‖∞. The random
potential ρ(x, t) is assumed to be independent of S(x, t) and such that, with probability one,
|||ρ|||∞ < +∞, |||∇ρ|||∞ < +∞, and |||�ρ|||∞ < +∞.

Let 〈·〉s and 〈·〉ρ denote the statistical averages w.r.t. S and ρ, respectively. We are inter-
ested in the critical couplings λ(−)

q (x, t), λ(+)
q (x, t), and λq(x, t) defined by

λ(−)
q (x, t) = sup{λ ≥ 0 below which 〈|E (x, t)|q〉s < +∞ a. s.}, (4a)

λ(+)
q (x, t) = inf{λ > 0 above which 〈|E (x, t)|q〉s = +∞ a. s.}, (4b)

λq(x, t) = inf{λ > 0 : 〈|E (x, t)|q〉ρ,s = +∞}. (4c)

In (4a) and (4b) “almost surely” refers to the appropriate probability measure for ρ. Note
that neither S nor ρ are assumed to be homogeneous and the critical coupling will depend
on x in general.

3 Controlling the Growth of |E(x, t)|q

In this section we go back over the Sects. III and IV of [1] allowing for the presence of
the ρ(x, t) random term on the right-hand side of (1). Since the calculations are essentially
the same, we do not give all the intermediate steps and refer the interested reader to [1] for
details.

Let s be the M-dimensional Gaussian random vector the elements of which are the sn,
and γ (x, τ ) the M × M Hermitian matrix defined by

γnm(x, τ ) = �∗
n(x, τ )�m(x, τ ).

Let ϕi be N real valued functions, with N = M2, given by γnn,
√

2Re(γnm), and
√

2Im(γnm),
n < m. Define

Gx,t;ρ(u) = 1

(2π)N

∫
· · ·

∫
RN

(x, t;η,ρ) eiu·η
N∏

i=1

dηi, (5)

in which (x, t;η,ρ) is the solution to the Schrödinger equation{
i∂t(x, t;η,ρ) = − 1

2m
�(x, t;η,ρ) + [ρ(x, t) + V (x, t;η)](x, t;η,ρ),

t ≥ 0, x ∈ �, and (x,0;η,ρ) = 1,
(6)
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where V (x, t;η) is given by

V (x, t;η) ≡
N∑

i=1

ηiϕi(x, t). (7)

In the following we make the dependence of E (x, t) on the realizations of s and ρ ex-
plicit by writing E (x, t) ≡ E (x, t; s, ρ). Let ai = infx(·)∈B(x,t)

∫ t

0 ϕi(x(τ ), τ ) dτ and bi =
supx(·)∈B(x,t)

∫ t

0 ϕi(x(τ ), τ ) dτ , where B(x, t) denotes the set of all the continuous paths in
� satisfying x(t) = x. Let k(s) be a vector in R

N the components of which are given by
|sn|2,

√
2Re(sns

∗
m), and

√
2Im(sns

∗
m), n < m. One has,

Lemma 1 For every t > 0, x ∈ �, and m ∈ C+\{0},
(i) for almost every realization of ρ, Gx,t;ρ defined by (5) is a distribution with compact

support on R
N and suppGx,t ⊂ [a1, b1] × · · · × [aN, bN ];

(ii) for almost every realization of ρ the solution to (1) is given by

E (x, t; s, ρ) =
∫

· · ·
∫

RN

Gx,t;ρ(u) eλk(s)·u
N∏

i=1

dui. (8)

Proof Analyticity of (x, t;η,ρ) in η is proved in Appendix (see the proof of Lemma 3).3

Let ̃(x, t;η,ρ) = (x, t;η,ρ) exp(−it
∑N

i=1 ηici) where the constants ci ∈ R are given
by

ci = − 1

2t

{∫ t

0
sup
x∈�

[ϕi(x, τ )]dτ +
∫ t

0
inf
x∈�

[ϕi(x, τ )]dτ

}
. (9)

̃ is the solution to (6) with V given by (7) in which the ϕi are replaced with ϕ̃i = ϕi + ci .
Let εi = sgn[Im(ηi)] and define

κi ≡
∫ t

0
sup
x∈�

[εi ϕ̃i(x, τ )]dτ = 1

2

{∫ t

0
sup
x∈�

[ϕi(x, τ )]dτ −
∫ t

0
inf
x∈�

[ϕi(x, τ )]dτ

}
. (10)

Note that, with this choice of ci , κi is independent of εi . Making the same calculation as in
[1] [from (15) to (21)] with the random potential ρ(x, t) on the right-hand side of (6), one
finds that

|̃(x, t;η,ρ)| ≤
⎡
⎣A + Bt

(
|||�ρ|||∞ + C

N∑
i=1

|ηi |
)

+ Bt2

(
|||∇ρ|||∞ + D

N∑
i=1

|ηi |
)2

⎤
⎦

× e
∑N

i=1 κi |ηi |, (11)

where A, B , C, and D are finite and independent of η and m. Since both |||∇ρ|||∞ and
|||�ρ|||∞ are almost surely bounded by assumption, (11) is similar to (21) in [1], with
probability one. The same reasoning as in the paragraph below (21) in [1] completes the
proof of (i).

3The proof is for η ∈ C. The generalization to η ∈ C
N is straightforward.
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To prove (ii) it suffices to note that according to (5), (8) can be rewritten as E (x, t; s, ρ) =
(x, t;η = iλk(s), ρ) which is the solution to (6) with η = iλk(s) in the potential (7). It can
be checked that the latter equation is indeed (1) [reconstruct |S|2 = s†γ s from its monomial
decomposition and multiply (7) by −i], which completes the proof of Lemma 1. �

As explained in [1], Lemma 1 makes it possible to use the Paley-Wiener theorem in order
to control the growth of E (x, t; s) as ‖s‖ → +∞. Let ŝ ≡ s/‖s‖ be the direction of s in C

M

and Hx,t (ŝ) = supx(·)∈B(x,t)

∫ t

0 U(x(τ), τ ; ŝ) dτ , with U(x, τ ; ŝ) = ∑N

i=1 k̂(s)iϕi(x, τ ) where

k̂(s) = k(s)/‖k(s)‖. One has the following lemma,

Lemma 2 For every t > 0, x ∈ �, m ∈ C+\{0}, and q a positive integer, one has

lim sup
‖s‖→+∞

ln |E (x, t; s, ρ)|q
‖s‖2

= qλHx,t (ŝ), (12)

along every given direction ŝ in C
M and for almost every realization of ρ.

Proof According to Lemma 1, one is allowed to follow the same line as the one leading to
the equation (24) in [1] for almost every realization of ρ. Thus,

lim sup
‖s‖→+∞

ln |E (x, t; s, ρ)|q
‖s‖2

≤ qλHx,t (ŝ), (13)

along every direction ŝ in C
M and for almost every realization of ρ. Let gx,t;ρ(u) be a distri-

bution with compact support on R whose Fourier transform, (m)(x, t;η,ρ) ≡ (F g
(m)

x,t;ρ)(η)

with η ∈ R, is the solution to (6) with V (x, t;η) = ηU(x, t; ŝ). Inequality (13) reduces to
an equality if one can prove that sup{v ∈ R : v ∈ suppgx,t;ρ} = Hx,t (ŝ) for almost every
realization of ρ (see the end of the proof of Lemma 2 in [1]). This is done in Appendix. �

4 Determination of the Critical Couplings

In this section we prove that the presence of the random potential ρ(x, t) on the right-hand
side of (1) does not affect the value of the critical coupling obtained in [1].

Let μ1[x(·)] > 0 be the largest eigenvalue of the covariance operator Tx(·) acting on
f (τ) ∈ L2(dτ), defined by

(Tx(·)f )(τ ) =
∫ t

0
〈S∗(x(τ ), τ )S(x(τ ′), τ ′)〉f (τ ′) dτ ′,

with 0 ≤ τ, τ ′ ≤ t and x(·) ∈ B(x, t). It is shown in [1] that there is a one-to-one relationship
between the non vanishing eigenvalues of Tx(·) and those of the matrix

∫ t

0 γ (x(τ ), τ ) dτ . In
particular, μ1[x(·)] is also the largest eigenvalue of

∫ t

0 γ (x(τ ), τ ) dτ . Define

μx,t = sup
x(·)∈B(x,t)

μ1[x(·)]. (14)

The critical couplings λ(−)
q (x, t) and λ(−)

q (x, t) defined in (4a) and (4b) are given by the
following proposition.
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Proposition 1 For every t > 0 and x ∈ �, λ(−)
q (x, t) = λ(+)

q (x, t) = (qμx,t )
−1.

Proof First we prove λ(−)
q (x, t) ≥ (qμx,t )

−1. Expressing U(x(τ), τ ; ŝ) in terms of the
quadratic form s†γ (x(τ ), τ )s in the expression for Hx,t (ŝ) (see the paragraph above
Lemma 2), one has

Hx,t (ŝ) = sup
x(·)∈B(x,t)

s†

‖s‖
[∫ t

0
γ (x(τ ), τ ) dτ

]
s

‖s‖ ≤ μx,t .

Hence, by Lemma 2,

lim sup
‖s‖→+∞

ln |E (x, t; s, ρ)|q
‖s‖2

≤ qλμx,t ,

for almost every realization of ρ. This implies that for every λ < (qμx,t )
−1 and almost every

realization of ρ,

〈|E (x, t)|q〉s =
∫

· · ·
∫

CM

e−‖s‖2 |E (x, t; s, ρ)|q
M∏

n=1

d2sn

π
< +∞, (15)

which proves λ(−)
q (x, t) ≥ (qμx,t )

−1.
We now prove λ(+)

q (x, t) ≤ (qμx,t )
−1. According to Lemmas 1 and 2, the calcula-

tion in the second Ref. [1] can be carried out for almost every realisation of ρ, yielding
〈|E (x, t)|q〉s = +∞ for every λ > (qμx,t )

−1 and almost every realisation of ρ. There-
fore λ(+)

q (x, t) ≤ (qμx,t )
−1. The obvious inequality λ(−)

q (x, t) ≤ λ(+)
q (x, t) completes the

proof. �

As a corollary of Proposition 1, one gets the following upper bound for the third critical
coupling λq(x, t), defined in (4c).

Corollary 1 For every t > 0 and x ∈ �, λq(x, t) ≤ (qμx,t )
−1.

Proof By proposition 1, 〈|E (x, t)|q〉s = +∞ for every λ > (qμx,t )
−1 and almost every re-

alisation of ρ. Thus 〈|E (x, t)|q〉ρ,s = 〈|E (x, t)|q〉s,ρ = +∞ for every λ > (qμx,t )
−1, which

proves the corollary. �

Considering a slightly reduced class of ρ, it is possible to go beyond Corollary 1 and
establish the counterpart of Proposition 1 for λq(x, t). This is the subject of the following
proposition.

Proposition 2 Assume that |||ρ|||∞ < +∞ with probability one. Given q ∈ N, if
〈|||�ρ|||q∞〉ρ < +∞ and 〈|||∇ρ|||2q

∞〉ρ < +∞, then for every t > 0 and x ∈ �, λq(x, t) =
(qμx,t )

−1.

Proof From 〈|||∇ρ|||2q
∞〉ρ < +∞ and 〈|||�ρ|||q∞〉ρ < +∞ it follows |||∇ρ|||∞ < +∞ and

|||�ρ|||∞ < +∞ with probability one. Thus, ρ belongs to the class considered above and
Corollary 1 holds. It remains to prove λq(x, t) ≥ (qμx,t )

−1.
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From E (x, t; s, ρ) = (x, t;η = iλk(s), ρ) it follows that E (x, t; s, ρ) is the solution to
(6) where the potential is given by (7) with the substitution ϕi(x, t) → U(x, t; ŝ)δ1i and
ηi → iλ‖k(s)‖δ1i = iλ‖s‖2δ1i . Equation (11) then yields,

|E (x, t; s, ρ)|q ≤
[
A + Bt

(|||�ρ|||∞ + Cλ‖s‖2
) + Bt2

(|||∇ρ|||∞ + Dλ‖s‖2
)2

]q

× eqλμx,t ‖s‖2
. (16)

Let p1 and p2 be two integers such that 0 ≤ p2 ≤ p1 ≤ q . By the Schwartz inequality and
the hypotheses, one has,

〈|||�ρ|||q−p1∞ |||∇ρ|||2p2∞ 〉ρ ≤ 〈|||�ρ|||q−p1+p2∞ 〉
q−p1

q−p1+p2
ρ 〈|||∇ρ|||2(q−p1+p2)

∞ 〉
p2

q−p1+p2
ρ

≤ 〈|||�ρ|||q∞〉
q−p1

q
ρ 〈|||∇ρ|||2q

∞〉
p2
q

ρ < +∞, (17)

〈|||�ρ|||q−p1∞ |||∇ρ|||p2∞〉ρ ≤ 〈|||�ρ|||q−p1+p2∞ 〉
q−p1

q−p1+p2
ρ 〈|||∇ρ|||q−p1+p2∞ 〉

p2
q−p1+p2
ρ

≤ 〈|||�ρ|||q∞〉
q−p1

q
ρ 〈|||∇ρ|||2q

∞〉
p2
2q
ρ < +∞, (18)

and

〈|||∇ρ|||2(q−p1)
∞ |||∇ρ|||p2∞〉ρ ≤ 〈|||∇ρ|||2(q−p1+p2)

∞ 〉
q−p1

q−p1+p2
ρ 〈|||∇ρ|||q−p1+p2∞ 〉

p2
q−p1+p2
ρ

≤ 〈|||∇ρ|||2q
∞〉

2(q−p1)+p2
2q

ρ < +∞. (19)

From (17)–(19) it follows that there exists a polynomial of degree 2q , P2q(·), such that
〈|E (x, t; s, ρ)|q〉ρ is bounded by

〈|E (x, t; s, ρ)|q〉ρ ≤ P2q(‖s‖2)eqλμx,t ‖s‖2
.

Thus, for every λ < (qμx,t )
−1 and almost every realization of ρ,

〈|E (x, t)|q〉ρ,s ≤
∫

· · ·
∫

CM

P2q(‖s‖2)e(qλμx,t −1)‖s‖2
M∏

n=1

d2sn

π
< +∞, (20)

which proves λq(x, t) ≥ (qμx,t )
−1. �

5 Summary and Perspectives

In this paper, we have studied the divergence of the solution to a Schrödinger-type amplifier
driven by the square of a Gaussian noise in presence of a random potential. For restricted
but quite wide classes of driver and potential , we have explicitly determined the values of
the coupling constant at which the moments of the solution diverge. Both moments w.r.t. the
driver for almost every realization of the potential, and moments w.r.t. both the driver and
the potential have been considered (with a slightly reduced class of potential in the latter
case). We have followed the same approach as in [1] in terms of distributional formulation
of the solution to (1) and use of the Paley-Wiener theorem.
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Our results show that the divergence is not affected by the random potential, in the sense
that it occurs at exactly the same coupling constant as what was found in [1] without a
potential. It follows a fortiori that the breakdown of the amplifier is not affected by the
possible existence of a localized regime in the amplification free limit.

As far as we know, there is no general simple criterium to decide whether a potential
belongs to the class(es) considered here. Nevertheless, sufficient conditions can be given
when the potential is a zero mean homogeneous and stationary Gaussian field. In this case it
can be shown [11] that Propositions 1 and 2 hold if the correlation function of the potential
is C6 in space and C2 in time. It follows in particular that our results apply in all the cases
where the potential has a smooth (C∞) correlation function. In laser-plasma interaction, our
results are expected to hold provided that the underlying hydrodynamic evolution can insure
smoothness of the plasma density at the scale of the coarse grained description (1).

We note that our conclusions carry over to cases where S and ρ may be correlated, as they
are in laser-plasma interaction. For instance, consider a potential ρ = ρ0 + ρ1 where ρ0 is
independent of S and ρ1 ∝ |S|2 is the S-induced potential perturbation. Putting this potential
on the right-hand side of (1) amounts to add a non zero imaginary part to λ. Now, the Paley-
Wiener theorem involves the real part of λ only, not its imaginary part. Consequently, the
whole machinery of Sects. III and IV of [1] is unaffected by the presence of ρ1, as is the
value of the critical coupling.

In most applications, space average is expected to give a more appropriate description
of the measured amplification than ensemble average. For a finite system, space average is
almost surely finite and it seems difficult to find an unambiguous definition of the critical
coupling in that case. In order to get clear-cut results one must let the system size go to
infinity. Although the random potential does not affect the value of the critical coupling,
it may affect the speed at which space average diverges above the critical coupling as the
system size goes to infinity. From a practical point of view, it would be interesting to find out
whether this effect does exist and, if so, to investigate it. Such a study, which will presumably
require the use of numerical simulations of (1), will be the subject of a future work.

Acknowledgements Ph.M. thanks Harvey A. Rose for providing many valuable insights. We also thank
Joel L. Lebowitz for useful discussions.

Appendix: Determination of the Support of g
(m)
(x,T )

Let ŝ ≡ s/‖s‖ be the direction of a given s in C
M and k̂(s) = k(s)/‖k(s)‖ the correspond-

ing direction in R
N , with k(s) defined above (see (5)). Let g

(m)

x,t;ρ(u) be a distribution with

compact support on R whose Fourier transform, (m)(x, t;η,ρ) ≡ (F g
(m)

x,t;ρ)(η) with η ∈ R,

is the solution to (6) with V (x, t;η) = ηU(x, t; ŝ), where U(x, t; ŝ) = ∑N

i=1 k̂(s)iϕi(x, t).
This appendix is devoted to the determination of the support of g

(m)

(x,t;ρ). We have modified
the notation used in the text to make the dependence on m explicit.

We begin with a technical lemma that will be useful in the sequel. Let C∞
0 (R) denote the

set of all smooth compactly supported functions in R, and C
+ ≡ {m ∈ C : Im(m) > 0}.

Lemma 3 For every t > 0, x ∈ �, f ∈ C∞
0 (R), z ∈ C (resp. m ∈ C

+), and almost every
realization of ρ,

∫
R

g
(m)

x,t;zρ(u)f (u)du is an analytic function of m ∈ C
+ (resp. z ∈ C), and∫

R
g

(m)

x,t;zρ(u)f (u)du = limγ→0+
∫

R
g

(m+iγ )

x,t;zρ (u)f (u)du for each real m �= 0 and every z ∈ C.
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Proof First we prove that, for almost every realization of ρ, (i) (m)(·, t;η, zρ) ∈
L2(�) is analytic in (m,η, z) ∈ C

+ × C
2; and (ii) ∀ (η, z) ∈ C

2, (m)(·, t;η, zρ) =
limγ→0+ (m+iγ )(·, t;η, zρ) in L2(�) for each real m �= 0 [8]. Define

Um(t) = exp

(
it�

2m

)
, t ≥ 0, m ∈ C

+,

and write the initial value problem (6) in the form of integral equation

(m)(t) = 1 − i

∫ t

0
Um(t − τ)V (τ)(m)(τ ) dτ.

Here V (t) is the multiplication operator with zρ(x, t) + ηU(x, t; ŝ). Let B denote the
space of bounded operators in L2(�). By Fourier series expansion, it is evident that (a)
‖Um(t)(m)(t)‖2 ≤ ‖(m)(t)‖2, viz. Um(t) ∈ B and ‖Um(t)‖ ≤ 1; (b) the function [0,∞) ×
(C+\{0}) � (t,m) → Um(t) ∈ B is strongly continuous [viz. (t,m) → Um(t)f ∈ L2(�) is
continuous for every f ∈ L2(�)]; and (c) for every t ≥ 0, m → Um(t) ∈ B is analytic for
m ∈ C

+ and (d/dm)Um(t) is norm continuous w.r.t. (t,m) ∈ [0,∞) × C
+. It follows from

the boundedness of U and ρ (almost surely) that the Dyson expansion [9]

Dm(t) = Um(t) − i

∫ t

0
Um(t − τ)V (τ)Um(τ) dτ + · · ·

+ (−i)n

∫
0<τ1<···<τn<t

Um(t − τn)V (τn) · · ·V (τ1)Um(τ1) dτ1 · · ·dτn

+ · · ·
converges in the operator norm of B uniformly w.r.t. (t,m) in every compact subset of
[0,∞) × (C+\{0}). Thus, the operator Dm(t) enjoys the same properties (b) and (c) men-
tioned above as an operator valued function of t and m. It is easy to check that Dm(t) defines
the propagator for (6) and is unitary if m, η, and z are real. Hence the solution to (6) satisfies
the properties (i) and (ii). From now on t > 0 is fixed.

Without loss of generality, we take for � the d-dimensional torus of length unity. For
every n ∈ Z

d , define ̂(m)
n (t;η, zρ) = ∫

�
(m)(x, t;η, zρ) exp(−2iπn · x)ddx. From this

expression, the compactness of �, and the Schwartz inequality, it is easily seen that prop-
erties (i) and (ii) imply that for every n ∈ Z

d and almost every realization of ρ, (iii)
̂(m)

n (t;η, zρ) is analytic in (m,η, z) ∈ C
+ × C

2; and (iv) ∀ (η, z) ∈ C
2, ̂(m)

n (t;η, zρ) =
limγ→0+ ̂

(m+iγ )
n (t;η, zρ) for each real m �= 0.

Now, (m)(·, t;η, zρ) is actually in H 2(�).4 As a result, (m)(x, t;η, zρ) is a contin-
uous function of x ∈ �, and by bounding its H 2(�)-norm in the same way as in [1] it
is not difficult to prove that, for d ≤ 3,

∑
‖n‖≤R ̂(m)

n (t;η, zρ) exp(2iπn · x) converges to

(m)(x, t;η, zρ) uniformly w.r.t. (x,m) in �× (C+\{0}) and (η, z) in every compact subset
of C

2 as R → +∞. This result together with (iii), (iv), and Morera’s theorem [10] im-
ply that for every x ∈ � and almost every realization of ρ, (v) (m)(x, t;η, zρ) is analytic in
(m,η, z) ∈ C

+ ×C
2; and (vi) ∀ (η, z) ∈ C

2, (m)(x, t;η, zρ) = limγ→0+ (m+iγ )(x, t;η, zρ)

for each real m �= 0.
Fix x ∈ �. The bound (11) has been obtained for η complex and z real (z = 1). One

might as well take η real and z complex. In that case, |(m)(x, t;η, zρ)| is bounded by an

4This is ensured by the fact that the L2(�)-norms of both  and � exist (see [1]).
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expression similar to (11) with |z| instead of |η| in the exponential. It follows that, if η is real,
then for every m in C+\{0} and z in a compact subset of C one can bound |(m)(x, t;η, zρ)|
with a polynomial of |η| the coefficients of which are independent of m and z. As a result,
|(m)(x, t;η, zρ)(F f )(−η)| is bounded by an integrable function of η independent of m

and z. Thus, by dominated convergence, properties (v) and (vi) imply that∫
R

g
(m)

x,t;zρ(u)f (u)du ≡
∫

R

(m)(x, t;η, zρ)(F f )(−η)
dη

2π

is a continuous function of m in C+\{0} and z in every compact subset of C. The continuity
in m proves the second part of Lemma 3. The first part can be proved straightforwardly as
an application of Morera’s theorem [10]. The line of the proof is as follows: (a) integrate
both sides of the above identity w.r.t. m (or z) along any closed path in C

+ (or C); (b) by
Fubini’s theorem the m- (or z-) and η-integrals can be interchanged and the result follows
immediately from (v), Cauchy’s theorem, and Morera’s theorem. �

Let a = infx(·)∈B(x,t)

∫ t

0 U(x(τ), τ ; ŝ) dτ and b = supx(·)∈B(x,t)

∫ t

0 U(x(τ), τ ; ŝ) dτ =
Hx,t (ŝ). One has the following lemma:

Lemma 4 For every t > 0, x ∈ �, m ∈ C+\{0}, and almost every realization of ρ, the
support of g

(m)

x,t;ρ is equal to [a, b].

Proof First, consider the case m = iγ and z = −iy, with γ > 0 and y > 0. Denote by
α[x(·)] the functional α[x(·)] ≡ ∫ t

0 U(x(τ), τ ; ŝ) dτ . It is proved in [1], Appendix B, that
α[x(·)] is a continuous functional of x(·) ∈ B(x, t) with the uniform norm on [0, t]. Let
h ∈ C∞

0 (R) a real positive test function with support in [a, b] and supu∈R
h(u) = 1. From the

continuity of α[x(·)] it follows that ∃x0(·) ∈ B(x, t) such that h(α[x0(·)]) = 1. By continuity
of h and α[x(·)] it follows that ∀ε > 0, ∃δ > 0 such that |h(α[x(·)]) − 1| < ε for every
x(·) ∈ B0(δ) ≡ {x(·) ∈ B(x, t) : sup0≤τ≤t ‖x(τ) − x0(τ )‖ < δ}. Take ε = 1/2, in this case
h(α[x(·)]) > 1/2 for every x(·) ∈ B0(δ) and for every realization of ρ one has∫

R

g
(iγ )

x,t;−iyρ(u)h(u)du =
∫

x(·)∈B(x,t)

e− ∫ t
0 [ γ

2 ẋ(τ )2+yρ(x(τ),τ )]dτ h(α[x(·)]) d[x(·)]

≥
∫

x(·)∈B0(δ)

e− ∫ t
0 [ γ

2 ẋ(τ )2+yρ(x(τ),τ )]dτ h(α[x(·)]) d[x(·)]

>
1

2

∫
x(·)∈B0(δ)

e− ∫ t
0 [ γ

2 ẋ(τ )2+yρ(x(τ),τ )]dτ d[x(·)],

which is bounded below by∫
R

g
(iγ )

x,t;−iyρ(u)h(u)du >
1

2
e−yt |||ρ|||∞

∫
x(·)∈B0(δ)

e− γ
2

∫ t
0 ẋ(τ )2dτ d[x(·)].

Since the set of the Brownian paths x(·) that are in B0(δ) has a strictly positive Wiener
measure and |||ρ|||∞ < +∞ almost surely, the last term is (almost surely) strictly positive
and one finds, for almost every realization of ρ,∫

R

g
(iγ )

x,t;−iyρ(u)h(u)du > 0. (A.1)
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If there was an open subset of [a, b] not intersecting the support of g
(iγ )

x,t;−iyρ , it would be pos-

sible to choose the support of h outside the one of g
(iγ )

x,t;−iyρ , yielding
∫

g
(iγ )

x,t;−iyρ(u)h(u)du =
0 in contradiction with (A.1). Thus, for every x ∈ �, γ > 0, y > 0, and almost every real-
ization of ρ, the support of g

(iγ )

x,t;−iyρ is equal to [a, b].
Consider now the case m = iγ , γ > 0, and z ∈ C. Fix a realization of ρ for which both

Lemma 3 and (A.1) hold, and assume that there is an open subset of [a, b] not intersecting
the support of g

(iγ )

x,t;zρ . In this case it is possible to choose the support of h outside the one

of g
(iγ )

x,t;zρ , yielding
∫

g
(iγ )

x,t;zρ(u)h(u)du = 0. By Lemma 3 the support of g
(iγ )

x,t;zρ must vary
continuously with z ∈ C, whence the support of h can be taken small enough such that there
is a open subset V(z) ⊂ C with z ∈ V(z) and

∫
g

(iγ )

x,t;zρ(u)h(u)du = 0 identically in V(z).

From the analyticity of
∫

g
(iγ )

x,t;zρ(u)h(u)du in z on C (Lemma 3), it follows immediately

that
∫

g
(iγ )

x,t;zρ(u)h(u)du = 0 identically in all C, in contradiction with (A.1). Since the set of
the realizations of ρ that do not fulfill Lemma 3 or (A.1) is of zero probability, one finds
that for every x ∈ �, γ > 0, z ∈ C, and almost every realization of ρ, the support of g

(iγ )

x,t;zρ
is equal to [a, b].

Consider finally the case m ∈ C+\{0} and z = 1. Again, fix a realization of ρ for which
both Lemma 3 and (A.1) hold, and assume that there is an open subset of [a, b] not inter-
secting the support of g

(m)

x,t;ρ . Since the support of g
(iγ )

x,t;ρ (γ > 0) is equal to [a, b] (see above),
it is always possible to choose a test function f ∈ C∞

0 (R) the support of which lies outside
the one of g

(m)

x,t;ρ , yielding
∫

g
(m)

x,t;ρ(u)f (u)du = 0, and such that

∫
R

g
(iγ )

x,t;ρ(u)f (u)du > 0. (A.2)

By Lemma 3 the support of g
(m)

x,t;ρ must vary continuously with m ∈ C+, whence the support

of f can be taken small enough such that there is a open subset V(m) ⊂ C
+ with m ∈ V(m)

and
∫

g
(m)

x,t;ρ(u)f (u)du = 0 identically in V(m). From the analyticity of
∫

g
(m)

x,t;ρ(u)f (u)du

in m on C
+ (Lemma 3), it follows immediately that

∫
g

(m)
x,tρ(u)f (u)du = 0 identically in

all C
+, in contradiction with (A.2). The fact that the set of the realizations of ρ that do not

fulfill Lemma 3 or (A.1) is of zero probability completes the proof of Lemma 4. �

It follows from Lemma 4 that sup{v ∈ R : v ∈ suppg
(m)

x,t;ρ} = b = Hx,t (ŝ) for almost every
realization of ρ, which is the result used in the proof of Lemma 2.
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